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On deflectors of optimum shape
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In this paper the problem of the jet deflector of optimum shape has been solved. The
deflector divides a jet that effuses from a semi-infinite channel of finite width. The
goal of the investigation is to define the shape of the deflector that provides either its
minimum wetted arclength under the given deflection angle or (which is equivalent)
the deflection of the jet through the maximum angle under the given arclength of the
deflector. An exact analytical solution of the problem has been found and it has been
shown that the solution realizes a global extreme. A series of optimum deflectors is
constructed for a variety of deflection angles and contraction jet coefficients.

1. Introduction
In the theory of jets and cavities there are only few results related to finding

optimal shapes and the corresponding exact bounds on hydrodynamic forces exerted
on curved obstacles. The first problem of this kind was solved by Lavrentieff (1938),
who determined the shape of minimum drag in Helmholtz flow for a two-dimensional
symmetrical body which is constrained to lie within a given rectangle. Later Serrin
(1953) extended the results of Lavrentieff to the axially symmetric case.

Wu & Whitney (1972) applied the technique of variational calculus to determine
the shape of a curved plate planing on a free surface and creating maximal lift, the
wetted arclength and the chord length of the plate being fixed. As a continuation
of this work Whitney (1972) considered a minimum drag problem in Helmholtz
flow under the same isoperimetric restriction as in Wu & Whitney (1972). No exact
bounds on hydrodynamic forces but only approximate solutions were obtained by
Wu & Whitney (1972), Whitney (1972).

In Maklakov (1988), Maklakov & Uglov (1995), Maklakov (1999) and Maklakov
(2004) a series of problems on defining optimum hydrodynamic shapes in free-
surface flows has been studied. The problems have been reduced to maximization
of nonlinear functionals under nonlinear restrictions. The global maximum has been
found by means of non-trivial application of Jensen’s inequality. In Maklakov (1988)
the deflectors of optimum shape that separate a free jet have been determined. In
Maklakov & Uglov (1995) the problem of the ideal optimum parachute for the
Joukovsky–Roshko–Eppler wake model has been solved. In Maklakov (1999) the
optimum shape of a planing plate has been found. In Maklakov (2004) the problem
of the optimum parachute in Helmholtz flow has been discussed. For all of the above
problems exact analytical solutions have been constructed. A systematical presentation
of the results can be found in the monograph by Maklakov (1997).

In this paper the problem solved in Maklakov (1988) is essentially generalized. The
deflector divides not a free jet but a jet that issues from a semi-infinite channel of
finite width. Deflectors have applications in many technical domains. In particular,
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Figure 1. Flow in (a) the physical z-plane, (b) parametric t-plane.

the thrust reversal device of bucket type for turbojet engines can be considered as
a deflector that turns the jet to create the backthrust that needs for braking an
aircraft. The principal quantity that defines the effectiveness of the deflector is the
deflection angle of the jet. The goal of the investigation carried out in the work is to
define the shape of the deflector that provides either its minimum wetted arclength
under the given deflection angle or (which is equivalent) the deflection of the jet
through the maximum angle under the given arclength of the deflector. In the latter
formulation the maximum deflection angle creates the maximum drag force (the
maximum backthrust). The location of the deflector with respect to the channel is
uniquely determined as part of the solution process. An important feature of the
problem is that the contraction coefficient of the jet is assumed to be given. A series
of optimum deflectors is constructed for a variety of deflection angles and contraction
coefficients. It is shown that the solutions obtained realize global extremes.

2. Problem formulation
Let us consider a two-dimensional jet of a fluid of density ρ that effuses from a

semi-infinite channel CBC′ of width 2H . The fluid is ideal and incompressible. The
flow velocity V∞ at infinity in the channel is assumed to be so large that the effect
of gravity may be neglected. The jet is deflected by the curved plate EDE′ (deflector)
through the angle θ∞. The width of the jet at the points A and A′ at infinity is δ. The
deflector as well as the entire flow are symmetric with respect to the axis of symmetry
of the channel. The x-axis is directed along the axis of symmetry, the y-axis is directed
vertically upward and goes through the stagnation point D of the flow (see figure 1a).

We shall call the ratio k = δ/H the contraction coefficient of the jet. This ratio is
assumed to change in the range 0 <k � 1. We suppose that the parameters ρ, H , V∞,
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θ∞ and k are given, the inclination angle θ∞ being in the range 0 � θ∞ � π. If θ∞ is
beyond of this range, then the jets CAE and C′A′E′ will intersect each other and the
flow loses its physical meaning. The problem is to find the shape of the deflector and
its location with respect to the channel (the distance d from the point D to the end
channel section CC′) so that the arclength 2L of the deflector is minimal.

It is to be noted that specifying the contraction coefficient k allows us to define
the constant velocity V0 along the free streamlines. Comparing the fluxes through the
channel and the jets we find that

V0

V∞
=

1

k
. (2.1)

Moreover, in specifying k we also specify the pressure difference between the inlet of
the channel and the atmosphere. Indeed, from Bernoulli’s equation it follows that the
pressure difference coefficient

Q =
p∞ − p0

ρV 2
∞/2

=
V 2

0

V 2
∞

− 1 =
1

k2
− 1,

where p∞ is the pressure at the point B at infinity of the channel, p0 is the atmospheric
pressure.

In accordance with Gurevich (1965) and (2.1) the drag force D of the deflector can
be determined by the equation

D = ρHV 2
∞

(
1

k2
− 2

k
cos θ∞ + 1

)
.

So, given the parameters ρ, H, V∞, θ∞ and k the drag force D is given too. If we
treat the problem as that of a thrust reversal device of bucket type, then D is the
backthrust, which is known in advance. Minimizing the arclength of the deflector
means minimizing the weight of the device. Later we shall show that the optimum
shapes found provide the maximum of the inclination angle θ∞ (the maximum of the
drag force D) for given parameters ρ, H, V∞, k and the arclength of the deflector 2L.

By virtue of symmetry we consider only the lower half of the flow in the physical
plane z = x + i y and map this half onto a quarter of the unit disk in the parametric
plane t = ξ + i η. The correspondence of points can be seen in figure 1(a,b). Let W

be the complex potential of the flow. The derivative dW/dt of the complex potential
can be found by Chaplygin’s singular point method (see Gurevich 1965):

dW

dt
= φ0

t(t4 − 1)

(t2 − a2)(1 − a2t2)(t2 + b2)(1 + b2t2)
, (2.2)

where φ0 is a constant that has the dimension of the velocity potential, a and i b are
the images of the points A and B in the t-plane respectively.

We introduce the logarithmic hodograph variable

ω(t) = log
V0 dz

dW
= log

V0

V
+ i θ, (2.3)

where V is the flow velocity, θ is the inclination of the velocity vector.
Let us assume that the function

ν(σ ) = Re ω(eiσ ), 0 � σ � π/2 (2.4)

is known.
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On the free streamline CAE we have

Reω(ξ ) = 0, 0 � ξ � 1. (2.5)

On the solid horizontal wall BC and the axis of symmetry BD we have

Im ω( i η) = 0, 0 � η � 1. (2.6)

According to (2.5), (2.6) the function ω(t) is imaginary on the real axis and real on
the imaginary axis; therefore it can be continued analytically across the segments CE
and CD onto the entire unit disk. With the Schwarz–Poisson formula we obtain from
(2.4)–(2.6) that

ω(t) = −4 i t

π
(t2 + 1)

∫ π/2

0

ν(σ ) sin σ dσ

t4 + 1 − 2t2 cos 2σ
. (2.7)

Calculating the residue of the function (2.2) at the point t = i b and taking into
account (2.1) we get

HV0 =
φ0π

2k(a2 + b2)(1 + a2b2)
.

Now we can exclude φ0 from equation (2.2) and express all features of the flow in
terms of the function ν(σ ) and the parameters a and b. In particular, the derivative
of the conformal mapping z = z(t) is determined as

dz

dt
=

2Hk(a2 + b2)(1 + a2b2)t(t4 − 1) exp ω(t)

π(t2 − a2)(1 − a2t2)(t2 + b2)(1 + b2t2)
. (2.8)

Because θ∞ and k = V∞/V0 are given we deduce from (2.3), (2.7) that the function
ν(σ ) and the parameters a, b must satisfy the following restrictions:

−Im ω(a) =
4a(a2 + 1)

π

∫ π/2

0

ν(σ ) sin σ dσ

a4 + 1 − 2a2 cos 2σ
= θ∞, (2.9)

Reω( i b) =
4b(1 − b2)

π

∫ π/2

0

ν(σ ) sin σ dσ

b4 + 1 + 2b2 cos 2σ
= − log k. (2.10)

The arclength of the deflector is found from (2.8):

L

H
= J (ν, a, b)

=
4k(a2 + b2)(1 + a2b2)

π

∫ π/2

0

sin 2σ exp[ν(σ )] dσ

(a4 + 1 − 2a2 cos 2σ )(b4 + 1 + 2b2 cos 2σ )
. (2.11)

So, the problem of minimizing the wetted arclength 2L of the deflector for given
ρ, H , V∞, θ∞ and k is equivalent to that of finding the parameters a, b in the ranges
0 < a < 1, 0 < b < 1 and the function ν(σ ), defined in the range 0 � σ � π/2, so that
a, b and ν(σ ) minimize the functional J (ν, a, b) under the restrictions (2.9), (2.10).
Before proceeding to solving the problem (2.9)–(2.11) we consider two particular cases
of it, namely to find the shape of the optimum deflector in a free jet and that inside
an infinite channel. Although the first particular problem has already been solved in
Maklakov (1988), we present its solution here so as not to lose the integrity of the
text.
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3. Optimum deflector in a free jet
Let us consider the deflector that divides a free jet. In this case the points B and C

coincide, the contraction coefficient k = 1 and the mathematical parameter b = 0. It
follows from (2.9)–(2.11) that at k = 1 and b = 0 we need to minimize the functional

L

H
= J1(ν, a) =

4a2

π

∫ π/2

0

sin 2σ exp[ν(σ )] dσ

a4 + 1 − 2a2 cos 2σ
(min) (3.1)

under the restriction (2.9). We have here only one restriction because at k = 1 and
b = 0 equation (2.10) degenerates to an identity.

To do the minimization we introduce a new unknown function

λ(σ ) = ν(σ ) + log cos σ. (3.2)

Substituting λ(σ ) for ν(σ ) in (3.1), (2.9) we arrive at the problem:

J1(λ, a) =
8a2

π

∫ π/2

0

sin σ exp[ν(σ )] dσ

a4 + 1 − 2a2 cos 2σ
(min) (3.3)

under the restriction

4a(a2 + 1)

π

∫ π/2

0

λ(σ ) sin σ dσ

a4 + 1 − 2a2 cos 2σ
= θ∞ − I (a), (3.4)

where

I (a) = −4a(a2 + 1)

π

∫ π/2

0

sin σ log cos σ dσ

a4 + 1 − 2a2 cos 2σ
. (3.5)

The denominator of the integrand in (3.5) is represented as follows:

∆ = a4 + 1 − 2a2 cos 2σ = (a2 + 1)(1 − α2 cos2 σ ),

where α = 2a/(a2 + 1). Then

∆−1 =
1

a2 + 1

∞∑
n=0

α2n cos2n σ.

After substitution of this expression in (3.5) and integration we obtain

I (a) = T

(
2a

a2 + 1

)
, T (α) =

2

π

∞∑
n=0

α2n+1

(2n + 1)2
. (3.6)

It is worth noting that

T (α) =
1

π
[Li2(α) − Li2(−α)], Li2(α) =

∞∑
n=1

αn

n2
,

Li2(α) being the Euler dilogarithm (see Prudnikov, Brychkov & Marichev 1988).
The function T (α) appeared first in the paper by Maklakov & Uglov (1995), in

which the shape of a curved plate of maximum drag in flow with a wake was
determined. It follows from equation (3.6) that this function is analytic in the unit
disk (|α| < 1). In Maklakov & Uglov (1995) it has been demonstrated that T (α) can
be continued analytically from the upper half of the unit disk to the upper half-plane
by the formula

T (α) = T (−1/α) + i log(α) + π/2, Im α > 0. (3.7)

In what follows we shall use (3.7) to compute T (α) for |α| > 1.



180 D. V. Maklakov

Let us assume that the function λ(σ ) and the parameter a satisfy the restriction
(3.4). The functional (3.3) can be estimated from below by a special case of Jensen’s
inequality (see Hardy, Littlewood & Polya 1934, p. 138):∫ q

p

f (σ ) eλ(σ ) dσ � exp

[∫ q

p

f (σ ) λ(σ ) dσ

]
, (3.8)

where ∫ q

p

f (σ ) dσ = 1, f (σ ) � 0,

the equality in (3.8) being possible if and only if λ(σ ) = C ≡ const. Applying (3.8) to
(3.1) with allowance made for (3.4), (3.6) we get the following estimate:

J1(ν, a) � G1(a), (3.9)

where

G1(a) =
8a2

π
g1(a) exp

{
π

4g1(a)

θ∞ − T [2a/(a2 + 1)]

a(a2 + 1)

}
, (3.10)

g1(a) =

∫ π/2

0

sin σ dσ

a4 + 1 − 2a2 cos 2σ
=

1

2(a2 + 1)a
log

1 + a

1 − a
.

The estimate (3.9) is correct for any function ν(σ ) and parameter a that satisfy the
restriction (2.9), the equality in (3.9) being possible if and only if

ν(σ ) = C − log cos σ, (3.11)

where C is a certain constant. Inserting (3.11) in (2.9) we find that for ν(σ ) defined
by (3.11) and

C =
π

2

θ∞ − T [2a/(a2 + 1)]

log[(1 + a)/(1 − a)]
(3.12)

the restriction (3.11) is fulfilled So, for the function (3.11) with C satisfying (3.12) the
equality holds in the estimate (3.9). For any other ν(σ ) that satisfy (2.9) we shall have
in (3.9) a strict inequality.

Let us find a minimum of the function G1(a) for 0 < a < 1. To do so we differentiate
G1(a) taking into account that

dT

dα
=

1

πα
log

1 + α

1 − α
.

After a little algebra differentiation gives

dG1(a)

da
=

πG1(a)

1 − a2

2

π
log

1 + a

1 − a
+ T

(
2a

a2 + 1

)
− θ∞

log2[(1 + a)/(1 − a)]
. (3.13)

It follows from (3.13) that the only minimum of the function G1(a) is attained at the
a that satisfies the equation

2

π
log

1 + a

1 − a
+ T

(
2a

a2 + 1

)
= θ∞. (3.14)

From (3.14) and (3.9) we deduce the global estimate

J1(ν, a) � f1(θ∞) =
4ae

π(1 + a2)
log

1 + a

1 − a
, (3.15)

where a is the root of equation (3.14).
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Figure 2. The ‘deflector’ inside the infinite channel.

Comparing (3.12) and (3.14) we come to the conclusion that C = 1 and the equality
in (3.15) is possible if and only if

ν(σ ) = 1 − log cos σ. (3.16)

Thus, the function (3.16) and the parameter a that satisfies (3.14) give the solution
to the problem of the optimum deflector in the free jet. The minimum value of L/H

for this case is Lmin 1/H = f1(θ∞).

4. Optimum ‘deflector’ inside an infinite channel
The flow region for this particular case is shown in figure 2. The points C and A

coincide, θ∞ = 0, a =0. The word deflector in the title of the section is in quotes
because for this case the deflector does not deflect the jet, but only contracts it. It
follows from (2.9)–(2.11) that we need to minimize the functional

J2(ν, b) =
4b2

π

∫ π/2

0

sin 2σ exp[ν(σ )] dσ

b4 + 1 + 2b2 cos 2σ
(min) (4.1)

under the restriction (2.10), because L/H = kJ2(ν, b) at a = 0. The problems (3.1),
(2.9) and (4.1), (2.10) are very similar and are solved by the same method. We again
make the change (3.2) of the function to be found and apply Jensen’s inequality
(3.8) to the denominator of the transformed functional (4.1). Taking into account the
transformed restriction (2.10) we arrive at the following estimate:

J2(ν, b) � G2(b), (4.2)

where

G2(b) =
8b2

π
g2(b) exp

{
− π

4g2(b)

log k + T1[2b/(1 − b2)]

b(1 − b2)

}
, (4.3)

g2(b) =

∫ π/2

0

sin σ dσ

b4 + 1 + 2b2 cos 2σ
=

1

2(1 − b2)b
arctan

2b

1 − b2
.

T1(β) = − i T ( i β) =
2

π

∞∑
n=0

(−1)n
β2n+1

(2n + 1)2
.

If in (4.3) the module of the argument of the function T1(β) is greater than unity
(|β| > 1), then we make use of the formula T1(β) = T1(1/β) + log β , which follows
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from (3.7). The equality in (4.2) is possible if and only if ν(σ ) is defined by (3.11) with

C = −π

2

log k + T1[2b/(1 − b2)]

arctan[2b/(1 − b2)]
. (4.4)

Equation (4.4) follows from (3.11) and (2.10). Differentiation of the function (4.3)
gives

dG2(b)

db
=

πG2(b)

1 + b2

2

π
arctan

2b

1 − b2
+ T1

(
2b

1 − b2

)
+ log k

arctan2[2b/(1 − b2)]
. (4.5)

From (4.3) and (4.5) we deduce that the only minimum of the function G2(b) with
respect to 0 < b < 1 is attained at the b which is the root of the equation

2

π
arctan

2b

1 − b2
+ T1

(
2b

1 − b2

)
= − log k. (4.6)

The global estimate for L/H follows from (4.2), (4.3) and (4.6):

L/H = kJ2(ν, b) � f2(k) =
4bke

π(1 − b2)
arctan

2b

1 − b2
, (4.7)

where b satisfies (4.6).
From (4.4) and (4.6) we find that as in the previous section C = 1. This means

that equations (3.16) and (4.6) give the solution to the problem of the optimum
deflector inside an infinite channel. The minimum value of L/H for this case is
Lmin 2/H = f2(k).

5. General case
5.1. Finding the global minimum

The investigation of the general problem on minimizing the functional (2.11) under
the restrictions (2.9), (2.10) is based on two facts. The first one is that for the particular
solutions obtained in two previous sections the function ν(σ ) is the same and defined
by (3.16). The second one is that

J (ν, a, b) = k[J1(ν, a) + J2(ν, b)]. (5.1)

This important equation follows from (2.11) immediately. From (5.1), (3.15) and (4.7)
we conclude that

J (ν, a, b) � kf1(θ∞) + f2(k) = Lmin/H, (5.2)

the equality in (5.2) being possible if and only if the parameters a, b are the roots of
equations (3.14), (4.6) correspondingly and ν(σ ) is defined by (3.16). Thus, we have
found the global minimum of L/H for the general problem (2.9)–(2.11). As one can
see this minimum turns out to be the linear combination of two particular minima

Lmin/H = kLmin 1/H + Lmin 2/H,

where the Lmin 1/H = f1(θ∞) and Lmin 2/H = f2(k) are the minimum values of L/H

for the deflector in a free jet and inside an infinite channel respectively. The graphs
of the functions f1(θ∞) and f2(k) are shown in figures 3 and 4.

5.2. Dual problem

As one can see from figure 3 the function f1(θ∞) increases monotonically. It follows
from this that the function Lmin/H = kf1(θ∞) + f2(k) for any fixed k increases
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Figure 4. The function Lmin 2/H = f2(k) for the deflector inside an infinite channel.

monotonically too with an increase of θ∞. This means that the solution (3.14), (3.16),
(4.6) is also the solution to the dual problem of finding the optimum deflector shape
that provides the maximum deflection angle θ∞ under the given arclength 2L of the
deflector. For this dual formulation we should find the parameter a from the equation

4ae

π(1 + a2)
log

1 + a

1 − a
= [L/H − f2(k)]/k, (5.3)



184 D. V. Maklakov

that follows from (3.15) and (5.2). The maximum deflection angle is determined by
(3.14).

But we should be careful in specifying L/H . Indeed, we cannot specify L/H < f2(k)
because the minimum value of f1(θ∞) = 0 at θ∞ = 0, and as follows from (5.2) f2(k) is
the minimal possible value of L/H that provides the given contraction coefficient k.
On the other hand the inclination angle θ∞ cannot be greater than π. From (3.14)
and (5.2) we conclude that θ∞ � π if

L/H � kP + f2(k), P =
4a∗e

π(1 + a2
∗)

log
1 + a∗

1 − a∗
,

where a∗ is the root of the equation (3.14) with θ∞ = π. Numerical computations
show that a∗ = 0.952036 and P = 6.405850. The quantity kP + f2(k) is the minimum
value of L/H that provides the revolution of the jet through an angle of 180◦.

Thus for L/H < f2(k) the dual problem has no solution. In the range

f2(k) � L/H � kP + f2(k)

the dual problem has the unique solution defined by equations (3.16), (4.6) and (5.3).
The case of long deflectors with L/H > kP +f2(k) is not interesting from the practical
point of view and we do not consider it.

5.3. Properties of optimum deflectors

Inserting (3.16) into (2.3) gives rise to the equation

ω(t) =
2 i

π
log

1 − t

1 + t
− i T (α), α =

2t

t2 + 1
. (5.4)

So, the optimum function ω(t) turns out to be independent of θ∞ and k. Knowing
the function ω(t) and the mathematical parameters a, b we can compute all features
of the flow over the optimum deflector. The conformal mapping of the parametric
domain onto the flow region can be written as

z = kz1(t) + z2(t), (5.5)

where

z1(t) =
2Ha2

π

∫ t

i

(t2 − 1) exp[ω(t)] dt

t(t2 − a2)(1 − a2t2)
, z2(t) =

2Hb2k

π

∫ t

i

(t2 − 1) exp[ω(t)] dt

t(t2 + b2)(1 + b2t2)
,

z1(t) and z2(t) being the conformal mappings of the parametric domain onto the
flow regions for the optimum deflector in a free jet and inside an infinite channel
respectively. Thus, the solution to the general problem is the linear combination of
the two particular ones.

Making use of the formula (2.8) we determine the distance d from the stagnation
point D to the end section CC′ of the channel:

d

H
=

2

π
k(a2 + b2)(1 + a2b2)

×
∫ 1

0

η(1 − η4) exp{T1[2η/(1 − η2)] + (4 arctan η)/π} dη

(η2 + a2)(1 + a2η2)(η2 − b2)(1 − b2η2)
.

Here the integrand has a singularity at the point η = b and should be computed as
a Cauchy principal value. It is worthwhile to note that the distance d cannot be
represented as a linear combination of the ‘particular’ d because for the particular
case of a free jet d = +∞ and for the particular case of an infinite channel d = −∞.
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Making use of (3.7) we find that

ω(eiσ ) = − log
V (σ )

V0

+ i Θ(σ ),

where
V (σ )

V0

= e−1 cos σ

is the distribution of the flow velocity along the optimum deflector, and

θ = Θ(σ ) = −π

2
− 1

π
log

1 + cos σ

1 − cos σ
+ T (cos σ ) (5.6)

is the distribution of the inclination of the velocity vector. The connection between
V and θ along the optimum deflector is defined as

θ = −π

2
− 1

π
log

1 + eV/V0

1 − eV/V0

+ T

(
e

V

V0

)
, 0 �

V

V0

< e−1. (5.7)

The shape of the optimum deflector is determined by the parametric equation

x/H = kx1(σ ) + x2(σ ),

y/H = ky1(σ ) + y2(σ ),

}
(5.8)

where

x/H = x1(σ ),

y/H = y1(σ )

}
and

x/H = x2(σ ),

y/H = y2(σ )

}
(5.9)

are the parametric equations of the optimum deflector in a free jet and inside an
infinite channel respectively, and

x1(σ ) =
8a2e

π

∫ π/2

σ

sin γ cos Θ(γ ) dγ

a4 − 2a2 cos 2γ + 1
, y1(σ ) =

8a2e

π

∫ π/2

σ

sin γ sin Θ(γ ) dγ

a4 − 2a2 cos 2γ + 1
,

x2(σ ) =
8b2ke

π

∫ π/2

σ

sin γ cosΘ(γ ) dγ

b4 + 2b2 cos 2γ + 1
, y2(σ ) =

8b2ke

π

∫ π/2

σ

sin γ sin Θ(γ ) dγ

b4 + 2b2 cos 2γ + 1
.

Let s be the arc coordinate of deflector points measured clockwise from the
stagnation point D. From (2.8) and (5.4) after a little algebra we deduce

s

H
=

2ke

π

[
a

a2 + 1
log

a2 + 1 + 2a cos σ

a2 + 1 − 2a cos σ
+

2b

1 − b2
arctan

2b cos σ

1 − b2

]
. (5.10)

As follows from equations (5.6) and (5.10) the inclination of the velocity vector
θ → ∞ as s → L (σ → 0). Therefore the optimal deflectors take the form of spirals
in the vicinity of the end point E. The reason is that the velocity distribution along
the boundary of the flow has a discontinuity at the point of separation E. Indeed, on
the free streamline EA we have V = V0, whereas at the end point E on the optimum
deflector V = e−1V0. From (5.6) and (5.10) it is easy to see that in the vicinity of the
point E (as σ → 0) the following asymptotic relations hold:

L − s

H
= R(1 − cos σ ) + o(1 − cos σ ), (5.11)

θ = −π

2
+

1

π
log(1 − cos σ )/2 + O(1 − cos σ ), (5.12)
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Figure 5. Flow regions for the optimum deflectors at (a) k = 0.5, (b) k = 0.7 and
θ∞ = 90◦, 135◦, 180◦.

where

R =
8ek

π

[
a2

(1 − a2)2
+

b2

(1 − b2)2

]
,

and in deducing (5.12) we need to take into account that T (1) = π/4. We exclude
(1 − cos σ ) from (5.11), (5.12) to write

θ = −π

4
− 1

π
log 2R +

1

π
log

L − s

H
+ O

(
L − s

H

)
.

From this relation it is possible to deduce that the spiral at the end point E is
asymptotically logarithmic and is described by the equation

r = 2ReM+πφ, (5.13)

where M = −π2/4 − π arctan π + ln(π/
√

π2 + 1), φ is a polar angle (negative for the
point E), and r is the distance between a point on the optimal deflector and the pole
E of the spiral.

The flow near the point E is asymptotically close to a spiral flow between two
free streamlines with constant but different velocities on each of them. Such flows
are discussed in Birkhoff & Zarantonello (1957, figure 35). It is to be noted that the
spirals near the end points E and E′ cannot be seen at any scales. Indeed, it follows
from equation (5.13) that with every half-revolution of the radius-vector r its length
decreases by the factor e−π2 ≈ 0.5 × 10−4. Therefore, if we plot a part of the spiral
corresponding to one half-revolution of the radius vector r the remaining part will be
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like a point at any scales. As was demonstrated in Maklakov (1999) and Maklakov
(1997) the contribution of these tiny spirals to the hydrodynamic forces is negligible.

In figure 5(a, b) we show the flow regions for the optimum deflectors. For
convenience of comparison the y-axis does not go through the point D but through
the end section CC′ of the channel. As one can see from figure 5 with an increase
of the deflection angle and the width of the jet, the minimum arclength 2L and the
distance d from the deflector to the channel increase too.

6. Conclusions
We have found an exact analytical solution to the problem of the deflector of

optimum shape which divides the jet that effuses from a semi-infinite channel. First we
have investigated two particular problems: on the optimum deflector in a free jet and
inside an infinite channel. In so doing we have estimated the minimized functionals
by means of Jensen’s inequality, the estimates turning out to be the functions of
only one variable. We have proven that the minima of these functions coincide with
those of the initial functionals. Thus both particular problems have been reduced
to minimization of the functions of one variable. This allows us to demonstrate
that the minima obtained are global. After solving the particular problems we have
proven a surprising fact: the solution to the general nonlinear problem is the linear
combination of the particular ones, both particular problems being also nonlinear.

The work was supported by the Russian Foundation of Basic Research under
grants No 05-01-00794, No 03-01-00015.
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